If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-3127=0
a = 1; b = 6; c = -3127;
Δ = b2-4ac
Δ = 62-4·1·(-3127)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-112}{2*1}=\frac{-118}{2} =-59 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+112}{2*1}=\frac{106}{2} =53 $
| 2(3x-5)=-12 | | 1/6x8= | | 6x+9+x=58 | | 5(3+2x)=48 | | 6(2x-1)=45 | | 7x-2+2x=88 | | x/3-4=18 | | 1/9^14=9^x | | (2x+15)=(3x-15 | | x÷16=36 | | 4(2x-6)=5(3x+5) | | 2÷12=x | | 6 | | 6 | | 2^8^x=102 | | 9x+13=8x+14 | | 7y-16=-54 | | (2x+15)+(3x-10)+(90)=180 | | 8f=10 | | 4x=13x+54 | | 22-h=112 | | 22+h=112 | | 2x-10+4x+46+3=180 | | H(x)=-2(1/3)^2 | | 5+10y=60 | | 0.5a=45 | | w/20-16=5 | | 3(x)^5=300 | | 21/14=9/x | | 50-x=30+5x | | 3k3-12k=0 | | 8x+2-2=8x-2 |